盖世汽车讯 据外媒报道,在自主导航领域的一项突破性进展中,郑州大学一研究团队发现了一种新颖的路径规划优化方法,该方法在不确定的环境中表现出卓越的鲁棒性。这篇题为《基于行动好奇心的深度强化学习算法在非确定性环境中的路径规划(Action-Curiosity-Based Deep R..
盖世汽车讯 据外媒报道,在自主导航领域的一项突破性进展中,郑州大学一研究团队发现了一种新颖的路径规划优化方法,该方法在不确定的环境中表现出卓越的鲁棒性。这篇题为《基于行动好奇心的深度强化学习算法在非确定性环境中的路径规划(Action-Curiosity-Based Deep Reinforcement Learning Algorithm for Path Planning in a Nondeterministic Environment)》的研究论文于6月3日发表,代表了人工智能与实际应用(尤其侧重于自动驾驶汽车)融合的重大飞跃。
图片来源:Junxiao Xue et al.
优化自动驾驶汽车路径规划的过程充满挑战,尤其是在这些车辆必须应对不可预测的交通状况时。随着人工智能技术的发展,研究人员正在积极探索各种策略,以提高这些系统的效率和可靠性。新开发的优化框架包含三个关键组件:环境模块、深度强化学习模块和创新的行动好奇心模块。
来源:盖世汽车扫描二维码分享到微信或朋友圈